Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Hazardous Materials ; 443:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2237278

ABSTRACT

Disinfection plays an essential role in waterborne pathogen control and disease prevention, especially during the COVID-19 pandemic. Catalyst-free solar light/periodate (PI) system has recently presented great potential in water disinfection, whereas the in-depth chemical and microbiological mechanisms for efficient bacterial inactivation remain unclear. Our work delineated firstly the critical role of singlet oxygen, instead of reported hydroxyl radicals and superoxide radicals, in dominating bacterial inactivation by the PI/simulated sunlight (SSL) system. Multi-evidence demonstrated the prominent disinfection performance of this system for Staphylococcus aureus in terms of culturability (> 6 logs CFU), cellular integrity, and metabolic activity. Particularly, the excellent intracellular DNA removal (> 95%) indicated that PI/SSL system may function as a selective disinfection strategy to diminish bacterial culturability without damaging the cell membrane. The PI/SSL system could also effectively inhibit bacterial regrowth for > 5 days and horizontal gene transfer between E. coli genera. Nontargeted metabolomic analysis suggested that PI/SSL system inactivated bacteria by triggering the accumulation of intracellular reactive oxygen species and the depletion of reduced glutathione. Additionally, the PI/SSL system could accomplish simultaneous micropollutant removal and bacterial inactivation, suggesting its versatility in water decontamination. Overall, this study deciphers more comprehensive antibacterial mechanisms of this environmentally friendly disinfection system, facilitating the technical development and application of the selective disinfection strategy in environmental pathogen control. [Display omitted] • PI/SSL system selectively inactivates cells by targeting intracellular DNA first. • PI/SSL treatment inhibits bacterial regrowth and horizontal gene transfer potential. • The bactericidal effect of 1O 2 in PI/SSL system was proposed for the first time. • Metabolomics showed that ROS accumulation is one of the antibacterial mechanisms. • PI/SSL system holds great promise in decontamination of the actual water system. [ FROM AUTHOR]

2.
Journal of Hazardous Materials ; : 130177, 2022.
Article in English | ScienceDirect | ID: covidwho-2069326

ABSTRACT

Disinfection plays an essential role in waterborne pathogen control and disease prevention, especially during the COVID-19 pandemic. Catalyst-free solar light/periodate (PI) system has recently presented great potential in water disinfection, whereas the in-depth chemical and microbiological mechanisms for efficient bacterial inactivation remain unclear. Our work delineated firstly the critical role of singlet oxygen, instead of reported hydroxyl radicals and superoxide radicals, in dominating bacterial inactivation by the PI/simulated sunlight (SSL) system. Multi-evidence demonstrated the prominent disinfection performance of this system for Staphylococcus aureus in terms of culturability (> 6 logs CFU), cellular integrity, and metabolic activity. Particularly, the excellent intracellular DNA removal (> 95%) indicated that PI/SSL system may function as a selective disinfection strategy to diminish bacterial culturability without damaging the cell membrane. The PI/SSL system could also effectively inhibit bacterial regrowth for > 5 days and horizontal gene transfer between E. coli genera. Nontargeted metabolomic analysis suggested that PI/SSL system inactivated bacteria by triggering the accumulation of intracellular reactive oxygen species and the depletion of reduced glutathione. Additionally, the PI/SSL system could accomplish simultaneous micropollutant removal and bacterial inactivation, suggesting its versatility in water decontamination. Overall, this study deciphers more comprehensive antibacterial mechanisms of this environmentally friendly disinfection system, facilitating the technical development and application of the selective disinfection strategy in environmental pathogen control.

3.
Eur J Psychiatry ; 35(4): 234-241, 2021.
Article in English | MEDLINE | ID: covidwho-1275294

ABSTRACT

BACKGROUND AND OBJECTIVES: Due to their professional characteristics and future career orientation, medical students have a deeper understanding of COVID-19 and enact disease prevention and control measures, which may cause psychological burden. We aimed to assess the psychological impact during the COVID-19 outbreak period(OP) and remission period(RP) among medical students. METHODS: We surveyed the medical students in Shantou University Medical College twice-during the OP and the RP, surveying psychological burden of COVID-19 lockdowns and its associated factors. 1069 respondents were recruited in OP and 1511 participants were recruited in RP. We constructed nomograms to predict the risk of psychological burden using risk factors that were screened through univariate analysis of the surveyed data set. RESULTS: There was a statistically significant longitudinal increment in psychological burden from OP to RP, and stress as well as cognition in psychological distress were the most dominant ones. Common impact factors of the depression, anxiety and stress included frequency of outdoor activities, mask-wearing adherence, self-perceived unhealthy status and exposure to COVID-19. In addition, the high frequency of handwashing was a protective factor for depression and anxiety. The C-index was 0.67, 0.74 and 0.72 for depression, anxiety and stress, respectively. CONCLUSION: The psychological impact of COVID-19 was worse during the RP than during the OP. Thus, it's necessary to continue to emphasize the importance of mental health in medical students during the pandemic and our proposed nomograms can be useful tools for screening high-risk groups for psychological burden risk in medical students.

SELECTION OF CITATIONS
SEARCH DETAIL